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Abstract. It is proven that the sum rules for X-ray magnetic dichroism (XMCD) spectra that are used
to separate spin and orbital contributions to the magnetic moment are formally correct for an arbitrary
strength of electron-electron interactions. However, their practical application for strongly correlated sys-
tems can become complicated due to the spectral density weight spreading over a broad energy interval.
Relevance of incoherent spectral density for the XMCD sum rules is illustrated by a simple model of a

ferromagnet with orbital degrees of freedom.

PACS. 78.70.Dm X-ray absorption spectra — 78.70.En X-ray emission spectra and fluorescence — 75.30.Mb
Valence fluctuation, Kondo lattice, and heavy-fermion phenomena — 71.28.4+d Narrow-band systems;

intermediate-valence solids

X-ray magnetic circular dichroism (XMCD) [1,2] is a pow-
erful technique to investigate both bulk and surface mag-
netic properties of materials. In particular, it allows to
measure separately spin and orbital contributions to the
magnetic moment of ferromagnets. Examples of numer-
ous applications of this method are recent studies of mag-
netism in thin metallic films [3], cobalt nanoparticles and
clusters [4], in magnetite Fe3O4 [5], and in dilute magnetic
alloys [6]. A concrete way to separate the orbital and spin
magnetic moments is using the XMCD sum rules [2,7,8]
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where Np, is the number of holes in d-band, pur, , (w) are
spectral intensities for Lg 3 spectra, Ay is the difference
between the spectra for left and right circularly polar-
ized radiation and u'°! is the total absorption intensity
for unpolarized one, S,, L, and T, are projections of the
total spin, orbital moment and the spin dipole operator
on the magnetization direction: S = Z s;,L = Z I;, T =

Z( s; — 3r; (r;8;) /TZ) with s; and 1; bemg the Spm and

3
orbital moments for ith electron, r; the coordinate opera-
tors.
A simple derivation of the XMCD sum rules in the
independent electron approximation was presented in ref-
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erence [9]. This derivation is based on a purely band pic-
ture of electron states in solids. The opposite case of
strongly localized electrons which are characterized by
atomic states with well-defined term and multiplet struc-
ture has been considered in References [7-10] (a somewhat
more simple derivation with the use of second quantization
formalism for the atomic states was presented in the pa-
per [8]). At the same time, many interesting systems such
as magnetite [5] should be considered as strongly corre-
lated systems demonstrating simultaneously both itiner-
ant and localized features of “magnetic” electrons [11,12].
Actually, the sum rules are widely exploited by experimen-
talists for such systems as well. In this work we present a
formal justification of this simple way to proceed. At the
same time, we discuss separately contributions to the sum
rules from coherent and incoherent parts of the electron
spectral density. We demonstrate that a proper account
of the incoherent (nonquasiparticle) contributions is nec-
essary for consistent treatment of the XMCD spectra of
strongly correlated systems.

The spectral intensity u(w) of the X-ray absorption
and emission spectra (XAS and XES, respectively) is de-
termined in the dipole approximation by the imaginary
part of the Green’s function [13,14]

((p-e’[p-e)), =eqesCap (W) (2)

Gus () = ({palps)), = —i / dtet ([pa (t) ,p))  (3)

where e is the photon polarization vector and p is the
momentum operator, «, 3 are the Cartesian indices and
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the brackets stand for the Gibbs average in the initial
state. For the case of XAS only the part of this opera-
tor works which corresponds to the transitions from core
states |a) (with the annihilation operators b,) to the con-

: f
duction electron states |A) created by operator ¢}
p =2 (Alpala) chba, (4)
a

and only the Hermitian conjugated part p(_) works for
the XES. For the case of Ly(Lg) spectra a labels total mo-
ment projection for 2p; /2 (2ps3 /2) states, correspondingly,
and A labels spin projection and orbital indices for 3d-
electrons. Transitions to s-states, which are also allowed in
the dipole approximation, are irrelevant for magnetism (in
particular, they practically do not contribute to XMCD)
and therefore will be neglected further.

It is important that equations (3), (4) are formally ex-
act irrespective to the degree of localization or delocaliza-
tion of d-electrons. The use of the atomic representation
for the states |\) allows to obtain explicit expressions for
the matrix elements (| pq |a) in terms of 3nj-symbols,
fractional parentage coefficients and irreducible matrix el-
ements [7,8,10]. However, for the derivation of the sum
rules such a concretization is not necessary and using the
A-representation yields a simpler way to proceed. Actually,
total intensities of the XAS for different photon polariza-
tions which are needed to obtain the XMCD sum rules are
determined by the integrals of the spectral density in the
infinite limits. Due to the Kramers-Kronig relations, the
latter are equal to

oo
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— 00

(5)
Here we have used the equations of motion for the Green’s
functions [14]. On substituting equation (4) into the right-
hand side of equation (5) one can see that the commutator
contains just the one-particle density matrices which are
expressed in terms of the corresponding anticommutator
Green’s functions:

o

pk'k = <CTACA/> = — /

— 00

dE
7f(E)1m(<CN|C§>>E (6)
where f(FE) is the Fermi function; similarly we introduce
the core density matrix

core

Para = <bjzba'> : (7)

Assuming that in the initial state the core electron states
are completely occupied, i.e., pS2/°¢ = §,4/, one can receive

the expression for the total spectral weight (integrated
intensity) of Ly 3 spectra:

_ 1 1 .
h; =2m Z <jmj|lm§a> <lm§a|p e (8)
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which differs from equation (2) of reference [9] only by
the replacement of one-electron expression for the den-
sity matrix pp,m,s by the exact one. Here [ = 2, j = 1/2
(3/2) for Ly (Lg) spectra, m,m’ and o, ¢’ are the orbital
and spin projections of d-electrons, respectively, m; is the
total moment projection for the core states. It is worth-
while to stress that using the orbital indices for itinerant
electrons does not mean any approximation: for any par-
ticular method of band structure calculations it is always
possible to re-expand the Wannier functions at a given
site into the spherical harmonics. Thus the density ma-
triX pmm is in general a linear combination of the band
structure occupation numbers with a proper symmetry.
Since the total spin and orbital moment as well as the spin
dipole operator are one-particle operators, their averages
are completely determined by the density matrix. Further
use of the Wigner-Eckart theorem to extract angular de-
pendences of the matrix elements and transformations of
the arising 3j-symbol products repeat the derivation in
reference [9]. Therefore the XMCD sum rules (1) are for-
mally valid without any restrictions.

On the other hand, the values of (S.) and (L,) ob-
tained in band calculations can violate the sum rules. The
calculation of the one-particle density matrix for strongly
correlated systems remains a quite nontrivial problem.
Generally, this quantity contains both coherent (quasipar-
ticle) contributions which are formally connected with the
poles of the Green’s function and incoherent (nonquasipar-
ticle) ones which are formally connected with the branch
cuts [15]. In a number of cases (for example, for strongly
correlated metals in the vicinity of the Mott transition or
for doped Mott insulators [16]) the quasiparticle spectral
density is much narrower than the incoherent one. One
should be therefore careful to avoid a confusion of the in-
coherent part with a spectrum background.

In practice, the use of the XMCD sum rules for
strongly correlated systems is not a completely well-
defined procedure since it is impossible to integrate the
spectral density in infinite limits. Atomic multiplet struc-
ture leads sometimes to much broader distribution of the
spectral density in comparison with a standard band pic-
ture. This fact has been recently demonstrated [17] for the
case of (La,Sr)MnOs where the configuration-interaction
calculations for Mn?*t ion gave the spectral density with
the width of order of 67 eV, in comparison with the value
23 eV within the local density approximation (LDA) or
LDA+U. At the same time, the energy separation between
Ly and L3 spectra varies from 68 eV for the light 3d met-
als (Ti, V) to 1520 eV for heavy ones (Co, Ni, and Cu).
This means that for strongly correlated systems L, and
L3 spectra can overlap appreciably. The energy distribu-
tion of the atomic multiplet structure can be comparable
with the spin-orbit splitting of the relevant core levels also
for rare earth systems which leads to some problems with
the practical applications of the XMCD sum rules in the
latter case [18].

It is a common practice to interpret the core-level spec-
tra for isolated atoms in terms of many-electron multi-
plet picture rather than one-electron quantum numbers
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|A) used above. These two approaches can be related via
the representation of one-electron operators in terms of
the Hubbard X-operators [19] X"I" = |I')/(I"| where
I' = {nLSM X} labels atomic configuration n, term LS
and moment projections M, X

o = Y VNGR (LyMy| Ly My_ylm)

nlnln_1

1
X <Sn Zn|Sn712n71§O'>XF”7Fn71 (9)

where G?Zﬁl are the fractional parentage coefficients (see
Refs. [20,21]). Equation (9) enables one to reproduce the
sum rules in the form yielding a detailed information con-
cerning term and multiplet structure [7,8,10].

At the same time, for a solid the atomic description
can be inappropriate. In particular, ferromagnetism itself
is an essentially band phenomenon. Moreover, it cannot be
properly described in the simplest Hubbard-I approxima-
tion [22] which assumes a formation of individual Hubbard
subbands from separate transitions between the atomic
levels. In particular, for a narrow-band ferromagnet we
cannot satisfy the sum rules (kinematic relations) for the
X-operators in this approximation.

To demonstrate this we consider a simple model of
a narrow-band itinerant electron ferromagnet with orbital
degrees of freedom which generalizes the standard infinite-
U Hubbard model:

H=> ten X" X7™° (10)

kmo

where ti, is the orbital-dependent band energy, X' s
the Fourier transform of the Hubbard operators and 0
labels the hole state at a site.

For this model the exact sum rules should be satisfied
for arbitrary m, o:

o= ng = <X0’0> = <X,L-O7ngf-m’O> = Z(XS’EmXZm’O>
k

+oo
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where ¢ is the concentration of current carriers (holes).
The Hubbard-I approximation for this model reads

(XX ™) 5 = [E — tian(No + Now)] ™. (12)
According to this expression, the quasiparticle pole for
o =| corresponds to a narrowed band and lies (for the
saturated ferromagnet case) above the Fermi level of the
holes which obviously violates the sum rule (11). In fact,
these sum rules are satisfied only due to incoherent (non-
quasiparticle) states which are present below the Fermi

level for the Hubbard model [23]. Similar to these papers
one obtains for the minority-spin Green’s functions in the

leading order in small parameter §
1 0] 10
— (XX g

=Y f(Bx—qim)6(E = Ex—qims + wamm)  (13)

qm/’

where Fxim = tkm(No 4+ Nim), Wgmm’ are the frequencies
of the corresponding spin-flip transitions. Thus we have
100% incoherent contribution to the spectral density be-
low the Fermi level. As the hole concentration increases,
the ferromagnetic state becomes non-saturated and a nar-
row quasiparticle minority-spin band occurs [24]. How-
ever, the main spectral density for this spin projection is
still due to the nonquasiparticle contribution. This exam-
ple demonstrates that, despite the XMCD sum rules for
strongly correlated ferromagnets have formally a standard
“one-electron” form, the energy distribution of the spec-
tral weight can be drastically different from usual band
picture.

The theoretical consideration [25] shows that the non-
quasiparticle contributions to XES and XAS should be
clearly observed. Moreover, such contributions should be
considerably enhanced by the interaction with the core
hole [25]. As well as for XES and XAS in general, the
main nonquasiparticle effects in the XMCD are connected
with the occurrence of the incoherent spectral density in
the energy gap for the half-metallic ferromagnets [26].
These states arise either only below the Fermi energy
(for the majority-gap half-metallic ferromagnets such as
magnetite) or only above it (for the minority-gap half-
metallic ferromagnets such as Heusler alloys or CrQOs);
therefore they can be studied by XES and XAS meth-
ods, correspondingly. Whereas a standard band theory
predicts 100% polarization for the conduction electron (or
hole) states, the depolarization due to the nonquasiparti-
cle states can be very strong (for example, in the infinite-U
Hubbard model limit there is no polarization at all [23]).
At the same time, ab initio calculations of the correlation
effects for the half-metallic Heusler alloy NiMnSb give a
rather small spectral weight of the nonquasiparticle states
(about 4%) [27] and therefore it would be preferable to
investigate them for the half-metallic ferromagnets with
more strong correlations such as Fe3O4 (by XES) and
CrO2 (by XAS).
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